来源:赛斯拜克 发表时间:2023-05-29 浏览量:963 作者:awei
柑橘溃疡病是一种严重的植物疾病,其症状包括在柑橘果实上形成溃疡状病斑。这种病不仅影响果实的外观,而且会导致产量和质量下降。因此,快速准确地检测和分类柑橘溃疡果至关重要。传统的检测方法如人工检测和图像处理技术,存在效率低下、易误判等缺点。而高光谱相机能够同时获取物体空间和光谱信息,为柑橘溃疡果的精确检测提供了可能。本文将探讨高光谱相机在柑橘溃疡果分类识别中的应用。
柑橘溃疡病是一种严重的植物疾病,其症状包括在柑橘果实上形成溃疡状病斑。这种病不仅影响果实的外观,而且会导致产量和质量下降。因此,快速准确地检测和分类柑橘溃疡果至关重要。传统的检测方法如人工检测和图像处理技术,存在效率低下、易误判等缺点。而高光谱相机能够同时获取物体空间和光谱信息,为柑橘溃疡果的精确检测提供了可能。本文将探讨高光谱相机在柑橘溃疡果分类识别中的应用。
高光谱相机在柑橘溃疡果检测中的应用,主要基于对柑橘果实的高光谱图像进行分析。通过高光谱相机获取柑橘果实的图像,能够同时获取果皮表面和内部的信息。而柑橘溃疡病会导致果实表面出现病斑,这些病斑在图像中表现为特定的纹理和颜色。通过分析这些特征,可以判断果实是否患有溃疡病。
高光谱相机还可以获取果实的反射光谱信息。这些信息可以用于分析果实的成熟度、营养成分等。通过对这些信息的分析,可以进一步判断果实的品质和价值。
本研究应用了400-1000nm的高光谱相机,可采用广东赛斯拜克科技有限公司产品SP130M进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。
本文主要基于高光谱成像系统,首先提取并分析每一类缺陷及正常果皮感兴趣区域光谱曲线并结合主成分分析法确定特征波段,接着基于特征波段进行二次主成分分析,再结合双波段比算法实现溃疡果与其他类脐橙(包括正常果及缺陷果)的分类识别。
本文基于光成像系统利用法及段比算法对包括溃疡果在内的 10 类常见橙果皮缺陷和正常果进行溃疡果的分类识别,识别率达到 95.4%。2)本试验处于实验室研究阶段,其中基于高谱系统采集到的数据量大,处理时间长,并不适合在线检测。通过试验本文得到 5 个特征波长用于溃疡果的分类识别其中可见光波段3(630685720 nm近红外波段2个(810 和875 nm)。基于这些特波,进行特征波段主成分分析,克服了通常单次主成分分析中由于存在较多的波段而无法使这种方法应用于在线检测的弊端。
考到仅利用成析法无法有效的分果和裂果、日灼及药伤果,本文提出采用主成分分析法与波段比相结合的算法。基于此算法使总体识别率由原来的80%提高到95.4%。但对日灼果的识别率没有提高。
基于试验中获得的5个特征波段,选取相应的滤波片,有助于开发基于多光谱成像技术的脐橙溃疡识别系统。另一方面,由于本文开发的算法比较简单,进一步为脐橙溃疡果的在线识别奠定了基础。
尽管本文研究对象是脐橙,但研究方法可能也适合其他柑橘类水果溃疡病斑的识别,有待进一步验证。另外,由于试验中涉及到的缺陷种类较多,样本收集存在一定困难,同时由于高光谱数据量大,处理较费时,因此,本研究中仅采用 13个样本作为探索性研究,虽然取得了比较理想结果,但后续将会进一步增加样本量,验证此理论的可行性
柑橘溃疡病是影响全球柑橘种植业发展的重大检疫性病害。目前大部分研究都集中在对这种病害的防治和检测方面,而对于带有溃疡病斑的柑橘类水果的剔除主要还是通过手工分选,对工人要求较高,且效率低,准确性差。随着图像处理技术的日趋先进和计算机硬件成本的降低及处理速度的提高,机器视觉系统在农产品品质自动检测和分级领域应用越来越广泛。
由于受害果表面的溃疡病斑呈灰祸色、木栓化、海绵状,周围略隆起呈暗褐色,最外圈为黄绿晕圈,这些特征与正常果皮表面有明显的差异,因此可以把溃疡果作为一种缺陷果,从而利用机器视觉技术进行快速检测。尽管国内外学者已对柑橘类水果表面缺陷检测分级做了大量研究在国内还未见利用机器视觉技术对溃疡果进行检测的相关报道。
本文主要基于高光谱成像系统,首先提取并分析每一类缺陷及正常果皮感兴趣区域光谱曲线并结合主成分分析法确定特征波段,接着基于特征波段进行二次主成分分析,再结合双波段比算法实现溃疡果与其他类脐橙(包括正常果及缺陷果)的分类识别。
本文基于光成像系统利用法及段比算法对包括溃疡果在内的 10 类常见橙果皮缺陷和正常果进行溃疡果的分类识别,识别率达到 95.4%。2)本试验处于实验室研究阶段,其中基于高谱系统采集到的数据量大,处理时间长,并不适合在线检测。通过试验本文得到 5 个特征波长用于溃疡果的分类识别其中可见光波段3(630685720 nm近红外波段2个(810 和875 nm)。基于这些特波,进行特征波段主成分分析,克服了通常单次主成分分析中由于存在较多的波段而无法使这种方法应用于在线检测的弊端。
考到仅利用成析法无法有效的分果和裂果、日灼及药伤果,本文提出采用主成分分析法与波段比相结合的算法。基于此算法使总体识别率由原来的80%提高到95.4%。但对日灼果的识别率没有提高。
基于试验中获得的5个特征波段,选取相应的滤波片,有助于开发基于多光谱成像技术的脐橙溃疡识别系统。另一方面,由于本文开发的算法比较简单,进一步为脐橙溃疡果的在线识别奠定了基础。
尽管本文研究对象是脐橙,但研究方法可能也适合其他柑橘类水果溃疡病斑的识别,有待进一步验证。另外,由于试验中涉及到的缺陷种类较多,样本收集存在一定困难,同时由于高光谱数据量大,处理较费时,因此,本研究中仅采用 13个样本作为探索性研究,虽然取得了比较理想结果,但后续将会进一步增加样本量,验证此理论的可行性。
柑橘溃疡病对柑橘产业造成了严重的威胁,开发准确、高效的溃疡果检测技术至关重要。高光谱相机作为一种新型的检测工具,具有很大的潜力。目前高光谱相机在柑橘溃疡果检测中的应用仍存在一些挑战,但随着技术的不断发展,这些问题有望得到解决。展望未来,高光谱相机将在柑橘溃疡果的精确检测和分类中发挥更大的作用,为柑橘产业的发展提供强有力的支持。